Цифры Госсета – Элте - Gosset–Elte figures

В 421 многогранник 8-мерного пространства
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png

В геометрия, то Цифры Госсета – Элте, названный Coxeter после Торольд Госсет и Э. Л. Элте, являются группой однородные многогранники которые не регулярный, порожденный Строительство Wythoff все зеркала связаны двугранными углами порядка 2 и 3. Их можно рассматривать как односторонне окольцованный Диаграммы Кокстера – Дынкина.

В Символ Кокстера для этих фигурок имеет вид kя, j, где каждая буква представляет собой длину ветвей порядка 3 на диаграмме Кокстера – Дынкина с одним кольцом на конечном узле k длина последовательности ветвей. В вершина фигуры из kя, j является (k − 1)я, j, и каждая из его граней представлена ​​вычитанием единицы из одного из ненулевых индексов, т.е. kя − 1,j и kя,j − 1.[1]

Исправленный симплексы включены в список как предельные случаи с k= 0. так же 0я, j, k представляет собой раздвоенный граф с окольцованным центральным узлом.

История

Coxeter назвал эти цифры как kя, j (или kij) в краткой форме и отдали должное их открытию Госсету и Элте:[2]

  • Торольд Госсет впервые опубликовал список правильные и полурегулярные фигуры в пространстве п Габаритные размеры[3] в 1900 году, перечислив многогранники с одним или несколькими типами правильный многогранник лица. Это включало выпрямленный 5-элементный 021 в 4-м пространстве, полусвободный 121 в 5-м пространстве, 221 в 6-м пространстве, 321 в 7-м пространстве, 421 в 8-м пространстве и 521 бесконечная тесселяция в 8-м пространстве.
  • Э. Л. Элте независимо перечислил другой полуправильный список в своей книге 1912 года, Полурегулярные многогранники гиперпространств.[4] Он позвонил им полуправильные многогранники первого рода, ограничивая свой поиск одним или двумя типами регулярных или полурегулярных k-граней.

Перечисление Elte включало все kij многогранники, кроме 142 который имеет 3 типа 6-граней.

Набор фигур продолжается в соты семейств (2,2,2), (3,3,1) и (5,4,1) в 6,7,8-мерных евклидовых пространствах соответственно. Список Госсета включал 521 соты как единственная полуправильная в его определении.

Определение

Простые группы ADE

Многогранники и соты этого семейства можно увидеть внутри Классификация ADE.

Конечный многогранник kij существует если

или равно для евклидовых сот, и меньше для гиперболических сот.

В Группа Кокстера [3я, j, k] может создать до 3 уникальных униформ Цифры Госсета – Элте с участием Диаграммы Кокстера – Дынкина с одним окольцованным конечным узлом. От Coxeter обозначения, каждый рисунок представлен kij означать конечный узел на kПоследовательность длины обведена кружком.

В симплекс семью можно рассматривать как предельный случай с k= 0, и все исправленный (однокольцевые) диаграммы Кокстера – Дынкина.

Семья А [3п] (исправлено симплексы )

Семья п-симплексы содержат фигуры Госсета – Элте вида 0ij это все исправленный формы п-симплекс (я + j = п − 1).

Они перечислены ниже вместе с их Диаграмма Кокстера – Дынкина, где каждое размерное семейство нарисовано как графический ортогональная проекция в плоскости Многоугольник Петри регулярного симплекса.

Группа КокстераСимплексИсправленныйДвунаправленныйТриректифицированныйQuadrirectified
А1
[30]
CDel node 1.png = 000

1-симплекс t0.svg
А2
[31]
CDel node 1.pngCDel 3.pngCDel node.png = 010
2-симплексный t0.svg
А3
[32]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 020
3-симплексный t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.png = 011
3-orthoplex.svg
А4
[33]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 030
4-симплексный t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png = 021
4-симплексный t1.svg
А5
[34]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 040
5-симплексный t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 031
5-симплексный t1.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png = 022
5-симплексный t2.svg
А6
[35]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 050
6-симплексный t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 041
6-симплексный t1.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png = 032
6-симплексный t2.svg
А7
[36]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 060
7-симплексный t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 051
7-симплексный t1.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 042
7-симплексный t2.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png = 033
7-симплексный t3.svg
А8
[37]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 070
8-симплексный t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 061
8-симплексный t1.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 052
8-симплексный t2.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png = 043
8-симплексный t3.svg
А9
[38]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 080
9-симплекс t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 071
9-симплексный t1.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 062
9-симплексный t2.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 053
9-симплексный t3.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png = 044
9-симплексный t4.svg
А10
[39]
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 090
10-симплексный t0.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 081
10-симплексный t1.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 072
10-симплексный t2.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.pngCDel 3b.pngCDel nodeb.png = 063
10-симплексный t3.svg
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3b.pngCDel nodeb.png = 054
10-симплексный t4.svg
......

D-семья [3п−3,1,1] полугиперкуб

Каждый Dп в группе есть две фигуры Госсета – Элте, п-полугиперкуб так как 1k1, и альтернативная форма п-ортоплекс, k11, построенный с чередующимися симплексными гранями. Исправленный п-полугиперкубы, форма более низкой симметрии двунаправленного п-куб, также может быть представлен как 0k11.

КлассДемигиперкубыОртоплексы
(Обычный)
Ректифицированные демикубы
D3
[31,1,0]
CDel nodea 1.pngCDel 3a.pngCDel branch.png = 110
3-demicube.svg
 CDel nodea.pngCDel 3a.pngCDel branch 10.png = 0110
3-куб т2 B2.svg
D4
[31,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png = 111
4-demicube.svg
 CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.png = 0111
4-кубик t0 B3.svg
D5
[32,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 121
5-demicube.svg
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 211
5-ортоплекс B4.svg
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0211
5-куб т2 B4.svg
D6
[33,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 131
6-demicube.svg
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 311
6-ортоплекс B5.svg
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0311
6-куб т2 B5.svg
D7
[34,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 141
7-demicube.svg
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 411
7-ортоплекс B6.svg
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0411
7-куб т2 B6.svg
D8
[35,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 151
8-demicube.svg
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 511
8-ортоплекс B7.svg
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0511
8-куб т2 B7.svg
D9
[36,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 161
9-demicube.svg
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 611
9-ортоплекс B8.svg
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0611
9-куб т2 B8.svg
D10
[37,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 171
10-demicube.svg
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 711
10-ортоплекс B9.svg
CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0711
10-куб т2 B9.svg
.........
Dп
[3п−3,1,1]
CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png...CDel 3a.pngCDel nodea.png = 1п−3,1CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png...CDel 3a.pngCDel nodea 1.png = (п−3)11CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.png...CDel 3a.pngCDel nodea.png = 0п−3,1,1

Eп семья [3п−4,2,1]

Каждый Eп группа с 4 по 8 имеет две или три фигуры Госсета – Элте, представленные одним из оконечных узлов, обведенных в кружок:k21, 1k2, 2k1. Исправленный 1k2 серия также может быть представлена ​​как 0k21.

2k11k2k210k21
E4
[30,2,1]
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png = 201
4-симплексный t0.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.png = 120
4-симплексный t0.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.png = 021
4-симплексный t1.svg
E5
[31,2,1]
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png = 211
5-ортоплекс B4.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.png = 121
5-demicube.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.png = 121
5-demicube.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.png = 0211
5-куб т2 B4.svg
E6
[32,2,1]
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 221
E6 graph.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 122
Gosset 1 22 polytope.png
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 221
E6 graph.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0221
Вверх 1 22 t1 E6.svg
E7
[33,2,1]
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 231
Gosset 2 31 polytope.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 132
Up2 1 32 t0 E7.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 321
E7 graph.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0321
Up2 1 32 t1 E7.svg
E8
[34,2,1]
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 241
2 41 многогранник petrie.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 142
Gosset 1 42 многогранник petrie.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 421
Gosset 4 21 многогранник petrie.svg
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0421

Евклидовы и гиперболические соты

Есть три евклидова (аффинный ) Группы Кокстера в размерах 6, 7 и 8:[5]

Группа КокстераСоты
= [32,2,2]CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = 222  CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 0222
= [33,3,1]Узлы CDel 10r.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png = 331CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node 1.png = 133 CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.png = 0331
= [35,2,1]CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 251CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 152CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 521CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0521

Есть три гиперболических (паракомпакт ) Группы Кокстера в размерах 7, 8 и 9:

Группа КокстераСоты
= [33,2,2]CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png = 322Узлы CDel 10r.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 232 CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = 0322
= [34,3,1]CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 431CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 341CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 143CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0431
= [36,2,1]CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 261CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 162CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png = 621CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png = 0621

В качестве обобщения с помощью этого символа можно также выразить несколько ветвей порядка 3. 4-мерный аффинный Группа Кокстера, , [31,1,1,1], имеет четыре ветви порядка 3 и может образовывать одну соту, 1111, CDel node 1.pngCDel 3.pngCDel node.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png, представляет собой форму более низкой симметрии 16-ячеечные соты, и 01111, CDel nodes.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes.png для выпрямленные 16-ячеечные соты. 5-мерный гиперболический Группа Кокстера, , [31,1,1,1,1], имеет пять ветвей порядка 3 и может выражать одну соту, 11111, CDel nodes.pngCDel split2.pngCDel node.pngCDel splitsplit1.pngCDel branch3.pngCDel node 1.png и его исправление как 011111, CDel nodes.pngCDel split2.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png.

Заметки

  1. ^ Кокстер 1973, стр.201
  2. ^ Кокстер, 1973, стр. 210 (11.x Исторические заметки)
  3. ^ Госсет, 1900 г.
  4. ^ Э. Л. Элте, 1912 г.
  5. ^ Coxeter 1973, pp.202-204, 11.8 Фигуры Госсета в шести, семи и восьми измерениях.

использованная литература

  • Госсет, Торольд (1900). «О правильных и полурегулярных фигурах в пространстве п Габаритные размеры". Посланник математики. 29: 43–48.
  • Элте, Э. Л. (1912), Полурегулярные многогранники гиперпространств, Гронинген: Университет Гронингена, ISBN  1-4181-7968-X [1] [2]
  • Кокстер, H.S.M. (3-е издание, 1973 г.) Правильные многогранники, Дуврское издание, ISBN  0-486-61480-8
  • Норман Джонсон Равномерные многогранники, Рукопись (1991)
    • N.W. Джонсон: Теория однородных многогранников и сот, Кандидат наук. Диссертация, Университет Торонто, 1966 г.